Logo Limitless Calculus

Derivative Formulas

Constant Rule
$\frac{d}{dx}(c) = 0$
Power Rule
$\frac{d}{dx}(x^n) = nx^{n-1}$
Exponential Rule
$\frac{d}{dx}(e^x) = e^x$
Logarithm Rule
$\frac{d}{dx}(\ln x) = \frac{1}{x}$
Sine Rule
$\frac{d}{dx}(\sin x) = \cos x$
Cosine Rule
$\frac{d}{dx}(\cos x) = -\sin x$
Tangent Rule
$\frac{d}{dx}(\tan x) = \sec^2 x$
Product Rule
$\frac{d}{dx}(uv) = u'v + uv'$
Quotient Rule
$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v - uv'}{v^2}$
Chain Rule
$\frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)$

Derivative Calculator

Enter a function to compute its derivative:

Result:

Integral Calculator

Enter a function to compute its integral:

Result:

Integral Formulas

Constant Rule
$\int k \, dx = kx + C$
Power Rule (n ≠ -1)
$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C$
Reciprocal Rule
$\int \frac{1}{x} \, dx = \ln|x| + C$
Exponential Rule
$\int e^x \, dx = e^x + C$
Sine Rule
$\int \sin x \, dx = -\cos x + C$
Cosine Rule
$\int \cos x \, dx = \sin x + C$
Secant Squared Rule
$\int \sec^2 x \, dx = \tan x + C$
Arctangent Rule
$\int \frac{1}{1+x^2} \, dx = \arctan x + C$
Arcsine Rule
$\int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin x + C$
Integration by Parts
$\int u \, dv = uv - \int v \, du$
Substitution Rule
$\int f(g(x))g'(x) \, dx = \int f(u) \, du$